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The vibration analysis of cylindrical shells using wave propagation method is presented.
Results obtained using the method have been evaluated against those available in the
literature. Comparison of the results by the present method and numerical "nite element
method is also carried out. It is possible to conclude through the comparisons that the
present method is convenient, e!ective and accurate. The method can be easily extended to
complex boundary conditions and #uid-loaded shell structures

( 2001 Academic Press
1. INTRODUCTION

Cylindrical shells are the practical elements of many types of engineering structures such as
aeroplanes, marine crafts and construction buildings. However, the analysis of vibration
characteristics of cylindrical shells is more complex than that of beams and plates. This is
mainly because the motion equations of cylindrical shells together with boundary
conditions are more complex. Love [1] modi"ed the Kirchho! hypothesis for plates and
established the preconditions of the so-called classic theory of thin shells, which is now
commonly known as Love's "rst approximation of the "rst kind. He then subsequently
formulated a shell theory known as Love's "rst approximation theory and the
preconditions he established soon became the foundations on which many thin shell
theories were later developed. like Flugge theory [2].

Numerous methods have been developed and used to study the vibrational behaviour of
thin shells. These methods range from energy methods based on the Rayleigh}Ritz
procedure to analytical methods in which, respectively, closed-form solutions of the
governing equations and iterative solution approaches were used [3}6]. Lam and Loy [7]
used beam functions as the axial modal functions in the Ritz procedure to study the e!ects
of boundary conditions on the free vibration characteristics for a multi-layered cylindrical
shell with nine di!erent boundary conditions. Loy et al. [8] applied the generalized
di!erential quadrature (GDQ) method for solving the vibration of cylindrical shells.

On the other hand, the wave propagation in cylindrical shells have also been investigated
by many researches. Harari [9] studied the wave propagation in shells with a wall joint. The
discontinuity consisted of a spring-type rubber insert and the results obtained showed
high-power re#ection coe$cients at the cut-on frequencies of various torsional waves.
Fuller [10] investigated the e!ects of discontinuities on the wall of a cylindrical shell in
vacuum on travelling #exural waves. Zhang and Zhang [11] studied the input and
transmitted power #ow of an in"nite cylindrical shell under the excitation of line
circumferential cosine forces. Zhang and White [12] studied the input power of a shell due
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to point force excitation. Experiments of driving point accelerance and transfer accelerances
were compared with theoretical predictions and good agreement was found in a frequency-
averaged sense. Xu et al. [13] studied the e!ects of wall joint on the vibrational power #ow
propagating in a #uid-"lled shell. Xu et al. [14] studied the vibrational power #ow from
a line circumferential cosine harmonic force into an in"nite elastic circular cylindrical shell
"lled with #uid. An integrated numerical method along the pure imaginary axis of the
complex wavenumber domain was used to analyze the response of the shell. The results of
a shell with #uid were compared with those of shell in vacuum to evaluate the e!ect of the
#uid. This research was extended to sti!ened shells "lled with #uid by Xu et al. [15].

It is well known that the natural modes of vibration of any continuous system are
superposition of equal but opposite-going propagating waves. An understanding of the
physics of this process can lead one to establish simple formulae for the frequencies of the
free modes of vibration. In this paper, the natural mode of the cylindrical shell is treated as
a combination of standing waves in the circumferential and axial directions. The
circumferential standing wave is determined by its circumferential modal parameter n, and
the axial standing wave is determined by its axial modal parameter m. The relation between
the natural frequency with the standing wave parameters n and m is created. The axial
wavenumber of standing wave is determined approximately by the wavenumber of an
equivalent beam with similar boundary conditions as the shell. This method is quite simple
as wavenumbers of beams with various boundary conditions can be obtained easily. This
method is also a non-iterative method, it is relatively less computationally intensive and it
also gives reasonably accurate natural frequencies.

2. METHOD

The cylindrical shell under consideration is with constant thickness h, radius R and
length ¸. The reference surface of the shell is taken to be at its middle surface where an
orthogonal co-ordinate system (x, h, z) is "xed. The x co-ordinate is taken in the axial
direction of the shell, where the h and z co-ordinates are, respectively, in the circumferential
and radial directions of the shell as shown in Figure 1. The displacements of the shell are
de"ned by u, v, w in the x, h, z directions respectively.

The equations of motion for a cylindrical shell can be written by the Love theory as
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The displacements of the shell can be expressed in the form of wave propagation,
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Figure 1. Co-ordinate system and circumferential modal shapes.
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Substituting equation (2) into equation (1), it can be written as
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where C
ij

(i, j"1, 2, 3) are the parameters from the ¸
ij

after they are operated with the x and
h. For non-trivial solutions, one sets the determinant of the characteristic matrix in
equation (3) to zero

[C
ij
]"0, i, j"1, 2, 3. (4)

Expansion of the determinant of the above equation provides the system characteristic
equation

F (k
m
, u)"0, (5)

where F (k
m
, u) is a polynomial function. This characteristic function can be used to

investigate the wave propagation in the shell as well as the natural frequency of the shell. In
the "rst case, the frequency u is given, equation (5) is a bi-fourth polynomial equation and
can be read as
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where a
i

(i"1, 2, 3, 4) are the coe$cients of equation (6) from which four pairs of
wavenumbers can be obtained. These wavenumbers can be separated into two groups. Each
group consists of four waves. The "rst group contains backward waves associated with
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a semi-in"nite shell, !R)x)0 (left-hand side), excited at the edge at x"0. The second
group describes forward waves associated with a semi-in"nite shell, !R*x*0 (right-
hand side), excited at the edge at x"0. If k

m
is pure real or pure imaginary, one obtains

a propagating wave or a near-"eld wave respectively. If k
m

is complex in conjugate pairs,
one obtains an attenuated standing wave, which means that the wave amplitudes decay in
one direction but the waves propagate in both directions.

In this paper, equation (5) is used to obtain the natural frequencies of the "nite shell. In
this case, the wavenumber is given according to the required standing-wave; equation (5)
can be written as
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where b
i
(i"1, 2, 3) are the coe$cients of equation (7). Solving equation (7), one obtains

three positive roots and three negative roots. The three positive roots are the angular
natural frequencies of the cylindrical shell in the axial, circumferential and radial directions.
The lowest of the three positive roots represents the #exural vibration, and the other two are
in-plane vibrations.

The right axial wavenumber k
m

must be chosen to satisfy the required boundary
conditions at the two ends of the cylindrical shell, for the frequency of the shell to be
obtained from equation (7). In this analysis, the wave travelling in the axial direction of the
shell is simply obtained by studying the wave travelling in a similar beam.

The wave displacement w
b
in the beam can be read in a general form as
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where the four x-dependent terms in equation (8) are recognized as the negatively decaying
evanescent wave, the positively decaying evanescent wave, the negatively propagating wave
and the positively propagating wave. The a

i
and the wavenumber k are determined by the

boundary conditions. They can be found in relevant references, like reference [3]. For
example, the simply supported}simply supported (SS}SS) boundary conditions lead to
sin (k¸)"0, so that k¸"mn, where m is the order of the axial standing wave. Therefore, for
a shell with the SS}SS boundary conditions, k

m
"mn/¸ and n can be used for equation (7)

to solve the natural frequency of the shell for the modal parameters (m, n).

3. NUMERICAL RESULTS AND DISCUSSION

To check the accuracy of the present analysis, the results obtained are compared with
those in the literature. A comparison of the values of the non-dimensional frequency

parameter X"uRJ(1!l2)o/E for the case of a free vibrating cylindrical shell with the
SS}SS boundary conditions is given in Table 1. In the parameter, E is Young's modulus of
elasticity, l is the Poisson ratio, o is the density, R is the radius and u is the angular
frequency. The comparisons are carried out for the parameter mR/¸"0)05 and for the
cases of h/R"0)05 and 0)002. For the parameter mR/¸, a value of m"1 is used and n are
chosen from 0 to 4 in the comparison. The next comparison of the non-dimensional
frequency parameter X for the case of a free vibrating cylindrical shell with
clamped}clamped (C}C) boundary conditions is given in Table 2. The comparison is
carried out for the case of ¸/R"20 and h/R"0)002 where m"1 and 2 are used and n are
selected from 1 to 5 in the comparison. The third comparison of the non-dimensional
frequency parameter X for the case of a free vibrating cylindrical shell with the SS}SS, the
C}C, and the clamped}simply supported (C}SS) boundary conditions is given in Table 3.



TABLE 1

Comparison of values of the frequency parameter

X"uRJ(1!l2)o/E for a cylindrical shell with simply
supported boundary conditions (m"1, mR/¸"0)05,

l"0)3)

h/R n Reference [7] Present

0)05 0 0)0929682 0)0929586
1 0)0161029 0)0161065
2 0)0392710 0)0393038
3 0)1098113 0)1098527
4 0)2102770 0)2103446

0)002 0 0)0929298 0)0929296
1 0)0161011 0)0161011
2 0)00545297 0)0054532
3 0)00504148 0)0050418
4 0)00853383 0)0085340

TABLE 2

Comparison of values of the frequency parameter

X"uRJ(1!l2)o/E for a cylindrical shell with clamped}
clamped boundary conditions (h/R"0)002, ¸/R"20,

l"0)3)

m n Reference [3] Reference [7] Present

1 1 0)03440 0)03440 0)03487
2 0)01204 0)01203 0)01176
3 0)007222 0)007222 0)007083
4 0)009048 0)009047 0)009016
5 0)01377 0)01377 0)01377

2 1 0)08484 0)08484 0)08742
2 0)03162 0)03162 0)03155
3 0)01603 0)01603 0)01586
4 0)01233 0)01233 0)01224
5 0)01484 0)01484 0)01482
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The comparison is carried out for the case of ¸/R"20 and h/R"0)01. In the comparison,
m"1 is used and n is chosen from 1 to 10. As one can see from the comparisons, very good
agreement with those in the literature is obtained.

In this paper, the "nite element method is also used to verify the proposed method. In the
numerical model, the length, radius and thickness of the shell are, respectively, 20, 1 and
0)01 m. The shell is made of steel with mass density o

1
"7850 kg/m3, the Poisson ratio

l"0)3 and Young's modulus E"2)1]1011 N/m3. The shell surface is meshed with 2000
shell elements. The shell is fully clamped at its boundaries. The number of nodes is 2040.
Natural frequencies of the shell were calculated using MSC/NASTRAN [16]. Table 4



TABLE 3

Comparison of values of the frequency parameter X"uRJ(1!l2)o/E for simply
supported}simply supported (SS}SS), clamped}clamped (C}C), and clamped}simply supported

(C}SS) cylindrical shells (m"1, ¸/R"20, h/R"0)01, l"0)3)

n SS}SS C}C C}SS

Reference [8] Present Reference [8] Present Reference [8] Present

1 0)016101 0)016101 0)032885 0)034879 0)023974 0)024721
2 0)009382 0)009382 0)013932 0)014052 0)011225 0)011281
3 0)022105 0)022105 0)022672 0)022725 0)022310 0)022335
4 0)042095 0)042095 0)042208 0)042271 0)042139 0)042166
5 0)068008 0)068008 0)068046 0)068116 0)068024 0)068054
6 0)099730 0)099731 0)099748 0)099823 0)099738 0)099771
7 0)137239 0)137240 0)137249 0)137328 0)137244 0)137279
8 0)180527 0)180527 0)180535 0)180617 0)180531 0)180569
9 0)229594 0)229596 0)229599 0)229684 0)229596 0)229636

10 0)284435 0)284438 0)284439 0)284526 0)284437 0)284478

TABLE 4

Comparison of frequency for a clamped}clamped cylindrical shell between ,nite element
method and present method (¸"20 m, R"1 m, h"0)01 m)

Frequency (Hz)

Order FEM Present Di!erence (%) Modal shape (m, n)

1 12)25 12)17 0)65 (1, 2)
2 19)64 19)61 0)15 (1, 3)
3 23)18 23)28 0)43 (2, 3)
4 27)69 28)06 1)33 (2, 2)
5 31)6 31)98 1)20 (3, 3)
6 36)7 36)47 0)63 (1, 4)
7 37)55 37)37 0)48 (2, 4)
8 39)87 39)78 0)23 (3, 4)
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shows the comparison of "rst eight frequencies of the shell obtained by the
MSC/NASTRAN and the present method. The di!erences of the frequencies between the
two methods are very small. They are less than 2%, so the proposed method is correct and
its results are reliable and accurate.

4. CONCLUSION

The artical has presented the analysis of cylindrical shells using wave propagation
method. Results obtained using the method have been evaluated against those available in
the literature and the agreement has been found to be good. Comparison of the results by
the present method and numerical "nite element method was also carried out. A "nite
element model for a cylindrical shell was created. The shell was fully clamped at both ends.
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The "rst eight natural frequencies were obtained with the MSC/NASTRAN. These results
were compared with the present method and the agreement between them was good.
Through the comparisons it is possible to conclude that the present method is convenient,
e!ective and accurate. The method can be easily extended to complex boundary conditions
and #uid-loaded shell structures.
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